
February 2005 www.stsc.hill.af.mil 13

In this article, the term object-oriented
(OO) technology refers to OO develop-

ment processes and methods, object-relat-
ed standards, and associated products and
tools from third-party vendors. Enter-
prises that develop software are looking to
OO as a means to achieve their strategic
business objectives. They expect that OO
will enable them to build complex systems
of superior quality with reduced develop-
ment time and costs, while providing long-
term benefits such as maintainability,
reusability, and extensibility.

If, in fact, OO has been in use for a
relatively long period, then why is it still
necessary to explore OO-specific risks?
The simple answer can be found in R.L.
Glass’ 2002 article [1]. According to Glass,
the introduction of a technology is no
guarantee of effective use. Similar to OO,
other technologies such as fourth-genera-
tion languages and computer-assisted soft-
ware engineering tools were introduced
with great fanfare, but once the technolo-
gy was more thoroughly understood, the
benefits turned out to be far more modest
than originally claimed.

Also, OO risks are not the same as
those associated with the introduction of
any new technology. With respect to para-
digm scope, complexity, and depth, OO has
far-reaching consequences. For the project
manager, the decision is not simply whether
to apply OO to a particular project: The use
of OO permeates all aspects of develop-
ment. Based on business priorities, project
managers must determine the desired pene-
tration of OO concepts, the optimal inser-
tion order, and whether the replacement of

legacy languages and tools is justified.

Object-Oriented Technology
In his 1995 book [2], Bertrand Meyer pro-
vides a sound overview of OO funda-
mentals. According to Meyer, software
construction embracing OO is structured
around the following concepts1.
• M1: A unique way to define architec-

ture and data structure instances.
• M2: Information hiding through

abstraction and encapsulation.
• M3: Inheritance to organize related

elements.
• M4: Polymorphism to perform opera-

tions that can automatically adapt to
the type of structure they operate on.

• M5: Specialized analysis and design
methods.

• M6: OO languages.
• M7: Environments that facilitate the

creation of OO systems.
• M8: Design by Contract, a powerful tech-

nique to circumvent module boundary
and interface problems.

• M9: Memory management that can
automatically reclaim unused memory.

• M10: Distributed objects to facilitate
the creation of powerful distributed
systems.

• M11: Object databases to move be-
yond the data-type limitations of rela-
tional database management systems.
Please note that this article is not

intended to be a tutorial on OO; rather, it
will examine risk implications associated
with all of these concepts. It is assumed
that the reader is familiar with the basics.

Risk Management
Risk management is acknowledged as a
critical process of project management,
and has received more and more attention
since the 1980s. For example, in the

Software Engineering Institute-developed2

process improvement framework, during
the transition from the Capability Maturity
Model for Software® (SW-CMM®) to
CMM IntegrationSM (CMMI®), risk man-
agement was elevated from a recommend-
ed practice to a formal, independent
process area. Nevertheless, to accommo-
date a broader audience, the definitions
used in the following discussion are based
on IEEE-STD-1540-2001 [3] and not
CMMI materials.

Risk is defined as a potential problem,
an event, hazard, threat, or situation with
undesirable consequences. The non-deter-
ministic nature of risk makes risk manage-
ment a special challenge for the project
manager. During project planning, we
might be tempted to try to avoid risks
altogether, but relying strictly on avoid-
ance as a risk mitigation technique is usu-
ally not adequate. The success of a project
depends primarily on the project manag-
er’s ability to manage the delicate balance
between opportunity and risk.
Unfortunately, when all risk goes away, so
does opportunity. That is why successful
project management practices include risk
management, a continuous process for
systematically addressing risk throughout
the life cycle of a product or service.

According to IEEE-STD-1540-2001,
the risk management process consists of
the following activities:
1. Plan and implement risk management.
2. Manage the project risk profile3.
3. Perform risk analysis.
4. Perform risk monitoring.
5. Perform risk treatment.
6. Evaluate risk management processes.

The focus of this article is risk identi-
fication, a critical aspect of risk analysis.
Risk identification, similar to all other ele-
ments of continuous risk management, is

Inherent Risks in Object-Oriented Development©

Dr. Peter Hantos
The Aerospace Corporation 

Object orientation has been in existence since the late 1970s. During the 1990s, however, on the basis of various claims that
it was a dramatic, new software engineering approach, object-oriented software development became pervasive. Currently, most
new software projects use object-oriented (OO) techniques to various extents. The persistence of schedule slips and cost over-
runs, particularly in the case of the development of large-scale, software-intensive systems, raises the need for revisiting the
basics and exploring the inherent risks that OO technology might contribute to the overall risk profile of a project. In this
article, Bertrand Meyer’s classic OO technology concepts are mapped into Barry Boehm’s Top 10 methodology-neutral soft-
ware risks to illustrate potential areas of exposure. Recent developments in OO technology, such as Java, Use Cases, or the
Unified Modeling Language fit well into this framework and are included as examples. The systematic approach introduced
will allow project managers to better understand the cost/benefit aspects of applying OO technology, and to align their project
management strategies more successfully with the organization’s business goals.

© 2004-2005 The Aerospace Corporation.
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration is a service mark of Carnegie Mellon
University.



14 CROSSTALK The Journal of Defense Software Engineering February 2005

not a one-time activity. Changes in the risk
management context and changing man-
agement assumptions represent major risk
sources, and need to be continuously
monitored as well. IEEE-STD-1540-2001
does not prescribe how risks should be
identified, but it suggests numerous meth-
ods, including the use of risk question-
naires or brainstorming.

A specialized example of a risk ques-
tionnaire, to be used in a Java 2 Enterprise
Edition (J2EE) environment, is presented
in [4]. Most risk questionnaires are the
result of some sort of brainstorming
effort; in most cases, the authors inter-
viewed experienced project managers
about their past projects and, after some
filtering and processing, they turn the
structured risk statements into questions
or checklists. For an example of a system-
atic approach to develop a checklist, see
Tony Moynihan’s article [5].

Barry Boehm first published his Top
10 Software Risks in 1989 [6], and pre-
sented an updated list in his 1995 software
engineering course with surprisingly few
modifications that were based on feed-
back from the University of Southern
California’s Center for Software
Engineering Industrial Affiliate compa-
nies. (For a published version of the sec-
ond list please see [7].) Essentially all
items, although sometimes named slightly
differently, still represented major risk
sources, and the name changes can be
attributed to changes in popular terminol-
ogy and not fundamental root causes.

Identifying OO Risks
Consolidating Boehm’s Risk Sources
For the discussion in this article, Boehm’s
list of Top Ten Software Risks will be
consolidated into eight risks as shown in
Figure 1. First, items on the 1989 list were
crosschecked with the 1995 list. Item No.
5, gold-plating, from the 1989 list is clearly a
requirements mismatch issue4. Finally, on
the 1995 list, for the sake of brevity,
requirements mismatch has also been
combined with user interface mismatch,

and commercial off-the-shelf (COTS)
issues with legacy software issues since
they have many similarities with respect to
root causes.

Mapping and Interpreting Meyer’s
OO Concepts
The objective of the following analysis is to
determine what OO concepts and prac-
tices are germane to risks viewed as signif-
icant by the software community. The key
to meeting this challenge is the use of well-
proven frameworks to inventory the essen-
tial attributes of OO technology and pro-
ject risks. Boehm’s risk identification check-
list was chosen because it is well accepted
in the software engineering community.

During the mapping process, we exam-
ined Boehm’s consolidated risk list item by
item and identified the corresponding, rel-
evant OO concepts. The results of this
mapping are summarized in Figure 2, and
a detailed discussion follows in the rest of
this article. The dots on Figure 2 represent
a relationship between the particular risk
item and the corresponding OO concept.
Arrows pointing to the risks signify the
influence of the selected OO concepts,
while arrows pointing to the OO concepts
relate to situations where the OO concepts
have a risk-mitigating – rather than risk-
triggering – effect.

Personnel Shortfalls (Risk B1)
Software development is a highly labor-
intensive process, and its success depends
primarily on the people in the organiza-
tion. Beyond well-known organizational
and political issues, several OO-specific
concerns need to be explored. The most
significant concerns are specialized skills
and experience, and that is why all OO
concepts are connected to this risk item as
shown in Figure 2.

The first issue is the right balance
between application domain knowledge
and OO knowledge. It is difficult to find
people skilled in both; hence, the collabo-
ration between project personnel with dif-
ferent skill bases is critical. The second

issue is the number and distribution of
available people. OO knowledge is rele-
vant for most members of the organiza-
tion, although not to the same extent. In
positions such as managers, architects,
developers, and testers, it is important that
all personnel have or acquire via training
the appropriate OO skills.

For example, to avoid personnel short-
falls, the executives themselves who create,
manage, or sponsor the development orga-
nization have to understand the essential
elements of OO even before staffing
starts for a project. While having prior OO
experience is an asset for managers, the
minimum requirement should be to have a
certain level of OO literacy. In fact,
Meyer’s book, which is used in this analy-
sis, is an excellent tool for this purpose, i.e.,
educating managers in OO fundamentals5.
The seeding of all teams with OO mentors
is also a good approach to distribute OO
domain knowledge and to both jump-start
and facilitate OO development.

Not surprisingly, most other sources
that have analyzed OO migration have
focused on the human dimension as well.
Two of the three key items discussed in [4]
deal with learning curve and training, and
[4] contains further references to other
authors addressing the same concern [8, 9].

Personnel issues play an important role
in the team context as well. OO requires a
new way of thinking and moving away
from outdated approaches like using func-
tional decomposition for architecting sys-
tems or implementing obsolete program-
ming constructs. For teams with a long
heritage of using legacy approaches, the
paradigm shift is particularly difficult. In
fact, sometimes we have observed a quiet,
passive resistance to OO methods where the
people attempted to fake the usage of new
methods but at the same time were con-
tinuing business as usual. A good example
for this anomaly is writing C-like pro-
grams with the use of a C++ compiler.

Unrealistic Schedules, Budgets, and
Process (Risk B2) 
Unrealistic expectations, lack of manage-
ment appreciation for the necessary skills,
and the difficulty of the paradigm shift
will lead to unrealistic schedules. Similarly,
underestimating the time and cost of nec-
essary training would result in unrealistic
schedules and budget. Nevertheless, some
key OO items specifically contribute to
this problem. Based on E. Flanagan’s sum-
mary [10], most of the time OO projects
are introduced on the following grounds:
• OO is better at organizing inherent

complexity, and abstract data types
make it easier to model the application.

1989 1995

Figure 1: Consolidating Boehm’s Top 10 Software Risks List

Risk Management



Inherent Risks in Object-Oriented Development

February 2005 www.stsc.hill.af.mil 15

(These statements are building on
Concept M1, labeled Architecture and
Instances.)

• OO systems are more resilient to
change due to encapsulation and data
hiding (per concept M2).

• OO design often results in smaller sys-
tems because of reuse, resulting in over-
all effort savings. This higher level of
reuse in OO systems is attributed to the
inheritance feature (per concept M3).

• It is easier to evolve OO systems over
time because of polymorphism (per
concept M4).
However, we can also learn from [5]

that, particularly when OO is introduced
for the first time, expectations might be
exaggerated, and frequently the impact of
potential costs and risks are minimized to
claim maximized payback. For example, it
might not be made clear to the sponsoring
executives that under certain circum-
stances it would take several years for just
the previously mentioned four benefits of
OO to be fully realized. The background
of this problem is two-fold. First, building
class-libraries is time consuming, or, in
case of purchase, they represent a major,
up-front investment. Second, to achieve
high return on investment, reuse must
take place in a very large project or in mul-
tiple projects.

One of the side effects of the OO
approach is that the design process
becomes more important than it was in
non-OO projects. Due to encapsulation,
data hiding, and reuse, the design com-
plexity moves out of the code space into
the design space. The increased design
complexity has testing consequences as
well. Even if incremental integration is
applied, more sophisticated integration
test suites need to be created to test sys-
tems with a potentially large number of
highly coupled objects.

It is also an unfortunate fact that while
the OO concepts identified make system
comprehension easier during analysis and
design, they cause testing and debugging
to become more difficult, since now all
debugging methodologies and tools have
to work with those abstract data types and
instances. Those organizations that
assume that testing OO is like testing any
other software are in for a big surprise. R.
Binder makes a powerful case for this
argument in his article [11]. According to
Binder, it is a common myth that only
Black Box6 testing is needed and OO
implementation specifics are unimportant.
In reality, OO code structure matters,
because inheritance, encapsulation, and
polymorphism present opportunities for
errors that do not exist in conventional

languages. Also, OO has led to new points
of view and representations, and the test
design techniques that extract test cases
from these representations must also
reflect the paradigm change.

Shortfalls in COTS, External
Components, and Legacy Software
(Risk B3)
Using COTS and other externally devel-
oped or legacy components in OO pre-
sents particular difficulties for structural
comprehension and architectural design.
These external components, their archi-
tecture, interfaces, and documentation are
not necessarily consistent with the class
and object architecture, communication
mechanisms, and view models of the sys-
tem being developed.

A particular OO problem in this area
is the interface of Object Database imple-
mentations with traditional Relational
Database management systems. The prob-
lem may deepen in situations where multi-
ple new technologies merge, for example,
in the use of Java-specific object-oriented
COTS products (Enterprise Java Beans,
Java Message Service, etc.) to develop
application services on standard IBM,
Sun, and Oracle platforms.

Requirements or User Interface
Mismatch (Risk B4)
The OO source of risk is the fact that use
cases are used almost exclusively to devel-
op requirements in OO systems.
However, use cases only capture function-
al requirements so additional process
steps need to be included to develop and
implement quality-related7, non-functional
requirements. An interesting source of
Graphical User Interface mismatch is that
the Use Case methodology, though well

suited for capturing the dynamism of
changing screens, is inappropriate for rep-
resenting screen details.

Shortfalls in Architecture, Performance,
and Quality (Risk B5)
This is the area where OO approaches
present a controversial impact. Data
abstraction, encapsulation, polymor-
phism, and the use of distributed objects,
while increasing architectural clarity, all
come with a price: substantial overhead
due to the introduced layers of indirec-
tion. Unless the system is carefully archi-
tected and sound performance engineer-
ing practices [12] are implemented from
the beginning, satisfying both perfor-
mance and quality objectives becomes dif-
ficult. All of these issues boil down to the
earlier mentioned design challenge.
Particularly in the case of real-time appli-
cations, the system architect must careful-
ly determine the optimal system cohesion.
Most real-time performance issues can be
resolved if you are willing to suffer
increased coupling and the consequent
loss of flexibility.

Another sensitive part of OO systems
is memory management in general and the
implementation of garbage collection in
particular. Garbage collection is an inte-
gral part of most OO run-time environ-
ments. It is a popular technique to ensure
that memory blocks that were dynamically
allocated by the programmer are released
and returned to the free memory pool
when they are no longer needed. A typical
OO application of this feature is the
dynamic creation and destruction of
objects. The problem is that in conven-
tional systems, the execution of the main
process needs to be interrupted while the
garbage collector does its job. This ran-

Meyer's OO Concepts

A
rc

h
it

ec
tu

re
an

d
In

st
an

ce
s

A
b

st
ra

ct
io

n
an

d
E

n
ca

p
su

la
ti

o
n

In
h

er
it

an
ce

P
o

ly
m

o
rp

h
is

m

A
n

al
ys

is
/D

es
ig

n
M

et
h

o
d

s

O
O

L
an

g
u

ag
es

O
O

E
n

vi
ro

n
m

en
ts

D
es

ig
n

b
y

C
o

n
tr

ac
t

M
em

o
ry

M
an

ag
em

en
t

D
is

tr
ib

u
te

d
O

b
je

ct
s

O
b

je
ct

D
at

ab
as

es

Boehm's Consolidated
Risk List M

1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

B1

B2

B3

B4

B5

B6

B8

Personnel Shortfalls

Unrealistic Schedules, Budgets, Process

Shortfalls in COTS, External Components, Legacy Software

Requirements or User Interface Mismatch

Shortfalls in Architecture, Performance, Quality

Continuing Stream of Requirement Changes

Straining Computer Science

Shortfalls in Externally Performed Tasks B7

Figure 2: Mapping Meyer’s OO Concepts Into Boehm’s Consolidated Risk List



16 CROSSTALK The Journal of Defense Software Engineering February 2005

domly invoked process with variable dura-
tions disrupts the real-time behavior of
the system.

There are two different approaches to
the mitigation of this risk. In the case of
real-time OO systems, prudent program-
ming practice should include explicit
object creation and destruction to elimi-
nate the dependency on garbage collec-
tion. Another solution is the implementa-
tion of the garbage collector via multi-
threading. However, multithreading is a
difficult, advanced concept that itself can
be the source of numerous risks. For a
complete discussion of multithreading
implementation pitfalls in Java, see [13].

Finally, a common, OO-related short-
fall of architecture pertains to reuse. Most
software development organizations
moved to OO because engineering man-
agers believed that it would lead to signif-
icant reuse. Unfortunately, as the authors
of [14] point out, without an explicit reuse
agenda and a systematic, reuse-directed
software process, most of these OO
efforts did not lead to successful, large-
scale reuse. Ironically, in some other situa-
tions, even the presence of a reuse-driven
agenda (platform-based product line
development) is no guarantee of success if
reuse becomes a slogan and senior man-
agement expectations are mishandled. In a
product line, the participating products
share (reuse) architecture and common
components, and the implementation of
an effective, strategic reuse process
becomes a key enabler in achieving low-
cost and high-quality products in a fast,
efficient, and predictable way [15].

As discussed earlier, OO promises a
high level of reuse via the inheritance fea-
ture and the use of class libraries.
Nevertheless, OO’s practical reuse is not
as supportive of the described strategic
reuse initiatives as one might like to see,
and even the full and uncompromising
implementation of OO does not guaran-
tee the satisfaction of any aspects of the
mentioned, reuse-centered corporate
architecture initiatives.

Continuing Stream of Requirement
Changes (Risk B6)
This risk is caused by customer behavior,
and the use of OO is not a contributing
factor. On the contrary, as it was pointed
out in Risk B2, OO architectural consider-
ations, encapsulation, and data hiding
increase the developed system’s resiliency
to requirements volatility.

Shortfalls in Externally Performed Tasks
(Risk B7)
Risk B7 is caused by contractor behavior,

and the use of OO does not play any role.
Nevertheless, similar to B6, the presence
of M1 and M2 OO concepts is an excel-
lent mitigating factor when these kinds of
problems arise.

Straining Computer-Science Capabilities
(Risk B8) 
The appeal of the concepts M1-M4 (see
Figure 2), which are theoretical in nature,
inspires system architects to use OO in
designing complex systems. Concepts
M5-M7 are related to implementation,
and their role is to enable and facilitate
using the theoretical concepts. This risk
item refers to the persistent tension
between the theoretical concepts and
their implementation, and the delicate
balance that must be maintained among
programming languages, developing envi-
ronments, and analysis/design methods.

The viability and feasibility of all
these elements have to be continually ver-
ified against the developed system’s archi-
tecture. A recent example is the introduc-
tion of a promising new programming
technique called Aspect-Oriented Pro-
gramming (AOP). According to Gregor
Kiczales, one of the principal developers
of AOP, integrating AOP with OO devel-
opment environments is difficult [16]. A
standard development environment
would have facilities for structure brows-
ing, smart editing, refactoring, building,
testing, and debugging, but it does not
have a way to represent and directly
manipulate AOP-specific constructs.

Summary
A systematic approach was presented to
identify risks in OO development. The
fundamental concepts of OO were intro-
duced and matched against a well-known,
methodology-neutral list of software
risks. This dissection of OO concepts
allows project managers to more com-
pletely understand the cost/benefit
aspects of applying OO, and to align their
project management strategies better with
the organization’s business goals.u

Acknowledgements
This work would not have been possible
without assistance from the following
people and organizations:
• Reviewers: Richard J. Adams, Sergio

Alvarado, Suellen Eslinger, and
Joanne Tagami all with The
Aerospace Corporation, and Scott A.
Whitmire at ODS Software, Inc.

• Sponsor: Michael Zambrana, U.S. Air
Force Space and Missile Center.

• Funding Source: Mission-Oriented
Investigation and Experimentation

Research Program, Software Acquisi-
tion Task.
A version of this article was present-

ed at the 2004 Pacific Northwest
Software Quality Conference (2004
PNSQC).

References
1. Glass, R.L. “The Naturalness of Object

Orientation: Beating a Dead Horse?”
IEEE Software May/June 2002.

2. Meyer, B. Object Success. Prentice
Hall PTR, 1995.

3. The Institute of Electrical and
Electronics Engineers. IEEE-STD-
1540-2001 – Standard for Software
Life Cycle Processes-Risk Manage-
ment. New York: IEEE, 2001.

4. Merson, P. “Managing J2EE Risks.”
Software Development July 2004.

5. Moynihan, T. “How Experienced
Project Managers Assess Risk.” IEEE
Software, May/June 1997.

6. Boehm, B. IEEE Tutorial on Software
Risk Management. IEEE Computer
Society Press, 1989.

7. Boehm, B. “Software Risk Manage-
ment: Overview and Recent Develop-
ments.” 17th International Forum on
COCOMO and Software Cost Mod-
eling. Los Angeles, CA, Oct. 2002.

8. Fichman, R., and C. Kemerer. “The
Assimilation of Software Process In-
novations: An Organizational Learn-
ing Perspective.” Management Science,
1997.

9. Feiman, J. Migrating Developers to
Java: Is It Worth the Cost and Risks?
Stanford, CT: Gartner, 2000.

10. Flanagan, E.B. “Risky Business.” C++
Report Mar.-Apr. 1995.

11. Binder, R.V. “Object-Oriented Test-
ing: Myth and Reality.” Object Mag-
azine May 1995.

12. Smith, C.U. Performance Engineering
of Software Systems. Addison-
Wesley, 1990.

13. Sandén, B. “Coping with Java
Threads.” IEEE Computer Apr. 2004.

14. Jacobson, I., et al. Software Reuse.
ACM Press, 1997.

15. Northrop, L.M. “A Practical Look at
Software Product Lines.” CASCON
2003, Ontario, CA, Oct. 2003.

16. Kiczales, G., and M. Kersten. “Show
Me the Structure.” Software Develop-
ment Apr. 2000.

Notes
1. Please note that the M1-M11 number-

ing of concepts did not originate from
Meyer; it was introduced by the author
to facilitate the mapping process.

2. The Software Engineering Institute is

Risk Management



February 2005 www.stsc.hill.af.mil 17

Risk Management
www.acq.osd.mil/io/se/risk_
management/index.htm
This is the Department of Defense
(DoD) risk management Web site. The
Systems Engineering group within the
interoperability organization formed a
working group of representatives from
the services and other DoD agencies
involved in systems acquisition to assist
in the evaluation of the DoD’s approach
to risk management. The group will con-
tinue to provide a forum that provides
program managers with the latest tools
and advice on managing risk.

Software Technology
Support Center
www.stsc.hill.af.mil
The Software Technology Support Cen-
ter is an Air Force organization estab-
lished to help other U.S. government
organizations identify, evaluate, and
adopt technologies to improve the quali-
ty of their software products, efficiency
in producing them, and to accurately
predict the cost and schedule of their
delivery.

Software Program
Managers Network
www.spmn.com
The Software Program Managers Net-
work (SPMN) is sponsored by the
deputy under secretary of defense for
Science and Technology, Software
Intensive Systems Directorate. It seeks
out proven industry and government
software best practices and conveys them
to managers of large-scale DoD software-
intensive acquisition programs. SPMN
provides consulting, on-site program
assessments, project risk assessments,
software tools, and hands-on training. 

Software Engineering
Institute
www.sei.cmu.edu
The Software Engineering Institute
(SEI) is a federally funded research and
development center sponsored by the
Department of Defense to provide lead-
ership in advancing the state of the prac-
tice of software engineering to improve
the quality of systems that depend on
software. SEI helps organizations and
individuals improve their software engi-
neering management practices. The site
features complete information on mod-
els the SEI is currently involved in devel-

oping, expanding, or maintaining,
including the Capability Maturity Mod-
el® Integration, Capability Maturity
Model® for Software, Software Acquisi-
tion Capability Maturity Model®, Sys-
tems Engineering Capability Maturity
Model®, and more.

Project Management
Institute
www.pmi.org
The Project Management Institute
(PMI) claims to be the world’s leading
not-for-profit project management pro-
fessional association. PMI provides glob-
al leadership in the development of stan-
dards for the practice of the project man-
agement profession throughout the
world. 

The Software Productivity
Consortium
www.software.org
The Software Productivity Consortium
is a nonprofit partnership of industry,
government, and academia. It develops
processes, methods, tools, and support-
ing services to help members and affili-
ates build high-quality, component-
based systems, and continuously advance
their systems and software engineering
maturity pursuant to the guidelines of all
of the major process and quality frame-
works. Based on the members’ collective
needs, its technical program builds on
current best practices and information
technologies to create project-ready
processes, methods, training, tools, and
supporting services for systems and soft-
ware development. 

INCOSE
www.incose.org
The International Council on Systems
Engineering (INCOSE) was formed to
develop, nurture, and enhance the inter-
disciplinary approach to enable the real-
ization of successful systems. INCOSE
works with industry, academia, and gov-
ernment in these ways: provides a focal
point for disseminating systems engi-
neering knowledge, promotes collabora-
tion in systems engineering education
and research, assures the establishment of
professional standards for integrity in the
practice of systems engineering, and
encourages governmental and industrial
support for research and educational
programs to improve the systems engi-
neering process and its practices. 

WEB SITES
a federally funded research and devel-
opment organization at Carnegie
Mellon University, Pittsburgh, Pa.

3. Risk profile: A chronological record
of a risk’s current and historical state
information [3].

4. Gold-plating is a popular software man-
agement term for implementing fea-
tures by software engineers that go be-
yond the scope of actual requirements.

5. Consider the book’s subtitle: “A manag-
er’s guide to object orientation, its
impact on the corporation and its use
for reengineering the software process.”

6. Black Box testing targets externally
observable behavior that is produced
from a given input, without using any
implementation information.

7. Quality in short is fitness for purpose,
the degree to which a system accom-
plishes its designated functions within
constraint. It includes all the -ities,
e.g., availability, reliability, security,
safety, etc.

Inherent Risks in Object-Oriented Development

About the Author

Peter Hantos, Ph.D., is
currently a senior engi-
neering specialist in the
Software Acquisition and
Process Office of the
Software Engineering

subdivision at The Aerospace Corpora-
tion. He has more than 30 years of expe-
rience as a professor, researcher, soft-
ware engineer, and manager. Previously
as principal scientist at the Xerox
Corporate Engineering Center, Hantos
developed corporate-wide engineering
processes for software-intensive systems,
and as department manager, he directed
all aspects of quality for several laser
printer product lines. He is author of
numerous technical papers and U.S. and
international conference presentations.
Hantos is a member of the Association
for Computing Machinery and senior
member of the Institute of Electrical
and Electronics Engineers. He has a
Master of Science and doctorate degree
in electrical engineering from the Buda-
pest Institute of Technology, Hungary.

The Aerospace Corporation
P.O. Box 92957 – M1/112
El Segundo, CA 90009-2957
Phone: (310) 336-1802
Fax: (310) 563-1160
E-mail: peter.hantos@aero.org


